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Theory - What makes a chord sound good?

● Inner ear anatomy
○ Cochlear duct is a series of fluid-filled 

chambers responsible for auditory 
perception

○ Organ of Corti transforms pressure 
waves (sound) to electrical nerve 
signals using cilia
■ Different frequencies excite 

different regions of cilia → 
critical bands
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Theory - Equal temperament

● 12-tone equal temperament adopted in Western classical music for convenience with 
modern piano design and minimized dissonance
○ Other tuning methods can minimize dissonance in certain intervals but would result in increased 

dissonance in most other intervals
○ Equal temperament spreads this dissonance across entire piano

● Frequencies of successive notes separated by constant multiplicative factor of 
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● A “pure” tone is characterized by a sine 
wave oscillating at a single frequency
○ Determining consonance and dissonance 

between two pure tones is as simple as 
comparing two frequencies

● Pianos produce “complex” tones 
comprised of many frequencies 
(harmonics)
○ Determining consonance and dissonance 

becomes more complicated
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Theory - Inharmonicity
● The frequencies of harmonics begin 

to drift from integer multiples of the 
fundamental 
○ Rigidity of piano does not propagate 

sound waves efficiently (acoustical 
impedance)

● Amount of inharmonicity is 
dependent on instrument/string 
characteristics (tension, stiffness, 
length)

● More elasticity = less inharmonicity

8



9



Project Goals

1. Quantitatively determine the differences between a tuned and an untuned piano

2. Determine the effect of frequency shift, octave correspondence, overtone amplitude, 

and self-dissonance on the tonal quality of a piano
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Methods

● Hardware
○ PCB 

■ Arduino microcontroller 
○ Sensors 

■ Electret microphone 
■ LCD
■ Keypad 
■ Current sensor 
■ Mono amplifier 
■ RTC
■ BME 680
■ SD breakout
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Methods Continued 
● Types of recordings

○ Tuned and untuned 
■ Steinway 

● Grand 
■ Yamaha 

● Upright and grand
■ Mason & Hamlin

● Grand 
○ Recently tuned and not recently tuned 
○ Krannert Center for Performing Arts 
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Methods Continued 
● Recording procedure 

○ Originally every key and middle C (C4) 
■ Pedals: sustain, damper, staccato 
■ Similar information from subsequent octaves 

○ Changed to octaves C2, C4, and C5 and middle C
■ Orange, green, indigo 
■ Black and white 
■ Only analyzed white keys 
■ Allowed time between notes
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Methods Continued 

● Offline analysis 
○ Python 
○ Arduino to SD as binary 
○ Binary to wave 

■ Gollin’s code 
○ Graph wave file 

■ Amplitude vs. time
○ Duration of each note
○ Cut file for each note

■ Numpy FFT
● Forward Discrete Fourier Transform 

○ Acoustic power coefficient 
● Computes frequencies corresponding to coefficients 
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Methods Continued 

E2 on a Grand Steinway
Theoretical Fundamental Frequency: 82.41 Hz
Measured Fundamental Frequency: 81.4966 Hz 15



Methods Continued 
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Spectrogram 
● C2 Scale, tuned Steinway
● Data transformed from time domain to frequency domain

○ Fourier transform
● Vertical line

○ Notes 
● Color - intensity 



Results

● General FFT
● Frequency shifts
● Octave correspondence
● Overtone amplitude
● Self-dissonance
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Fast Fourier Transform

● As mentioned before, a FFT brings the audio file from the time 
domain into the frequency domain

● Using a FFT will produce frequency peaks where the fundamental 
pitch resides

● The tonal quality of a piano can be analyzed by using the difference 
between the measured and theoretical fundamental frequency
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Fast Fourier Transform on C-Major Scale
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Frequency Shifts

● They are the largest contributor to impurities in tonal quality.
● When the frequency of a note deviates noticeably from its equal 

tempered frequency, it is perceived as sharp or flat
○ A frequency above the fundamental is sharp
○ A frequency below the fundamental is flat
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Frequency Shifts Cont.
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Frequency Shifts Cont.
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Octave Correspondence
● Primary method used to tune pianos 

○ Align the second harmonic of C4 with first fundamental of C5
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Octave Correspondence Cont. 
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Overtone Amplitude
● The perceived frequency and 

tone of a note is due to the 
prevalence of its harmonic. 

● When the acoustic power of a 
note’s upper harmonics begin to 
exceed that of its fundamental, 
the frequency of the 
fundamental begins to get 
overpowered.
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Self-Dissonance

● When a piano is out of tune, a listener can often hear beats when it’s 
played
○ Two or more tones of similar frequencies interfering with each other

● An untuned piano can display doublet shaped peaks, whereas a tuned 
piano has a single peak

● Doublet shape is caused by dissonance.
○ Cannot form in lower octaves (one string per note) 
○ Middle and upper octaves have multiple strings per note
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Self-Dissonance
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Discussion

● Sources of error
● Adjustments for future experiments
● Design proposal
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Sources of Error

● Not all results are standardized 
across all four devices

● FFT peak values were 
determined manually

● More tuned than untuned pianos 
were recorded
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Future Improvements

● Automating the code to generate the FFT peak value
● A higher quality microphone could be used
● Recording barometric pressure, temperature, and humidity may be 

useful
● Focus on a single piano for an extended period of time
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Design Proposal

● This analysis can be used for a variety of piano technician needs
○ Piano appraisal
○ Training piano tuners
○ Verifying tonal quality before concerts

● The methods used in this paper can be used to create a software for 
personal use
○ Takes a scale as an input
○ Eliminates white noise
○ Analyzes FFT
○ Generates and compares Railsback curve
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Conclusion

● Perceived tonal quality doesn’t entirely depend on frequency shifts
● Tuned pianos exhibit small frequency differences, strong octave 

correspondence, smooth overtone amplitude patterns, and low self 
dissonance

● Untuned pianos exhibit large frequency differences, poor octave 
correspondence, erratic overtone amplitude patterns, and noticeable 
self-dissonance
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